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Abstract
Grazing by large herbivorous mammals is still a structuring force in tropical grassy

ecosystems, and cattle grazing is one of the main economic activities carried out in these

ecosystems in modern times. Therefore, understanding the impacts of cattle grazing removal

on biodiversity may be a key step for conservation of this ecosystem. Here, we studied the

successional trajectory of dung beetle communities in a tropical grassy ecosystem after cattle

removal. For this, we assessed the patterns of dung beetle taxonomic and functional diversity

of 14 natural grasslandswith distinct cattle grazing removal ages (from3 months to 22 years)

along a chronosequence, applying the space-for-time substitutionmethod. Our results show a

strong decrease in dung beetle abundance (93 times) and species richness (6 times) in the first

ten years of cattle removal. However, after ten years there is an increase in dung beetle

abundance (73 times) and species richness (5 times). Taxonomic composition was also

influenced by cattle removal time demonstrating the importance of cattle in the structuring of

dung beetle communities in natural grasslands. In contrast, functional composition and

diversity were not affected by cattle grazing removal, indicating these metrics are less sen-

sitive to cattle absence than taxonomic diversity and composition. Our results provide evi-

dence that cattle grazing removal, at least in the short term (10 years), may be an inefficient

management tool for restoration and conservation of tropical grassy ecosystems. However,

we highlight the need to investigate the reintroduction of cattle grazing after different removal

times to provide complimentary information to livestock management able to integrate

human use and conservation of tropical grassy ecosystems.
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Introduction

Livestock farming, the largest land-use sector on Earth, occupies more than 30% of the

planet’s continental surface (FAO 2012). In tropical grassy ecosystems (e.g. savannas and

grasslands) cattle grazing is a traditional agricultural activity, and one of the main eco-

nomic activities carried out in these ecosystems (Parr et al. 2014). Grazing by large

mammalian herbivores has historically and prehistorically been a major structuring force in

tropical grassy ecosystems (Bakker et al. 2015; Veldmann et al. 2015). These ecosystems

evolved with and depended on herbivory, heavy hoof action, nitrogen deposits, and

decomposing carcasses of large herbivores (Bond and Parr 2010), directly influencing the

biodiversity and ecosystem services (van Klink et al. 2015; Dettenmaier et al. 2017).

There is an increasing debate about the effects of cattle grazing in biodiversity of

tropical grassy ecosystems (Parr et al. 2014; Veldmann et al. 2015; Overbeck et al. 2015;

Lehmann and Parr 2016). Livestock farming is considered the main driver of natural

habitat loss worldwide (Alkemade et al. 2013; Herrero and Thornton 2013). The negative

effects of livestock on biodiversity are related to the conversion of native to exotic veg-

etation, grazing intensity, the replacement of wild grazers by domestic animals and land

management (e.g., use of fertilizers and veterinary drugs) (Alkemade et al. 2013; Lehmann

and Parr 2016). In this context, some studies have reported that grazing exclusion

throughout the world prevents ecosystem degradation and restores degraded areas (Kröpfl

et al. 2013; Al-Rowaily et al. 2015; Listopad et al. 2018). Although the role of livestock

farming as a global agent for the degradation of the ecosystems is recognized (Parr et al.

2014; Overbeck et al. 2015; Veldmann et al. 2015; Lehmann and Parr 2016), cattle grazing

in suitable density and frequency may be beneficial for the biodiversity of grasslands

ecosystems (Overbeck et al. 2007; Correa et al. 2019a). Cattle grazing affects vegetation

heterogeneity, plant succession and forage-plant growth control (Olff and Ritchie 1998;

Adler et al. 2001), maintaining or restoring grasslands that would otherwise be converted

into other land uses (Veldmann et al. 2015). Therefore, in some native grassy ecosystems,

livestock grazing has been used as a strategy to improve biodiversity conservation (Verdú

et al. 2007; Fynn et al. 2016; Törok et al. 2016). For example, in parts of Europe (Pykälä

2003, Törok et al. 2016), African savannas (Fynn et al. 2016) and in Mexican grasslands

(Verdú et al. 2007) low-intensity domestic livestock grazing is being used as an important

factor to maintain and restore biodiversity (Veldmann et al. 2015). Indeed, both grazing

and long-term cessation can differently affect various components of grassland biota

(Foster et al. 2014; van Klink et al. 2015). Therefore, it is essential to understand the

successional trajectory of the biotic communities along a gradient of exclusion and/or

inclusion of cattle grazing, to incorporate conservation decisions into land management of

tropical grassy ecosystems.

In this sense, the importance of long-term time series (more than 20 years) for analyzing

the effects of anthropic actions is widely recognized (Bakker et al. 1996; Rees et al. 2001;

Peco et al. 2006), given that ecological processes that lead to functional and biodiversity

changes in grassland ecosystems are generally long-term (Peco et al. 2006, 2017; Listopad

et al. 2018). However, studies of the successional trajectory of biotic communities in

tropical grassy ecosystems are scarce (see Cava et al. 2018), and the impacts of inclusion or

exclusion of cattle grazing as a tool for ecosystem conservation are poorly known.

Therefore, studies on the response of animal and/or plant groups that provide important

services to the ecosystem are necessary to supply baselines for conservation policies,

which may help to protect tropical grassy ecosystems around the world (Correa et al.
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2019b). In this way, understanding the dynamics of these ecosystems can also be an

important strategy for developing measures to restore anthropogenic landscapes (Bond and

Parr 2010; Veldmann et al. 2015; Cava et al. 2018).

Here, we studied the successional trajectory of dung beetle communities in a tropical

grassy ecosystem after cattle grazing exclusion. We choose dung beetles (Coleoptera:

Scarabaeidae) because they are used across the globe as indicators of environmental

changes (Nichols et al. 2007) and exhibit wide variation in life history strategies that are

reflected in easily measurable functional traits (Halffter and Edmonds 1982; Hanski and

Cambefort 1991). Therefore, they are viable models for functional diversity studies aimed

at understanding the effects of anthropogenic actions on ecosystem processes (Barrágan

et al. 2011; Audino et al. 2014, 2017; Beiroz et al. 2018). In addition, dung beetles perform

important ecological functions in grassland ecosystems, such as: dung removal, nutrient

cycling, improving soil fertility, secondary seed dispersion and fly and gastrointestinal

parasite control (see Nichols et al. 2008).

We evaluated the patterns of dung beetle taxonomic and functional diversity along a

chronosequence of natural grasslands with different cattle grazing removal ages (from

3 months to 22 years), to answer the following questions: (1) Do species richness, number

of individuals, diversity, biomass and functional diversity decrease with cattle grazing

removal age? (2) Are dung beetle taxonomic and functional composition influenced by

time of cattle grazing removal? We expect dung beetle richness, abundance, diversity and

biomass, and functional diversity to decrease with time since cattle grazing exclusion as a

result of a reduction in resource availability (Tonelli et al. 2018). We expect changes in

dung beetle taxonomic and functional composition because the grazing exclusion implies

changes in spatial heterogeneity of vegetation (Wallis-de-Vries et al. 2007), also modifying

the local microclimate conditions (Edmondson et al. 2016; Ozkan and Gokbulak 2017) and

favoring colonization by a number of habitat specialist dung beetle species (Larsen 2012).

Material and methods

Study area

This study was conducted in the Aquidauana municipality, Mato Grosso do Sul state,

Brazil (19�54036 00 S, 55�4705400 W), covering the southern part of Brazilian Pantanal sub

region of Rio Negro (Padovani 2010). Native vegetation in the region is a complex mixture

of aquatic, savanna, and forest formations that are strongly influenced by annual and multi-

annual flood cycles (Pott and Pott 2009). The Pantanal is considered the largest Neotropical

seasonal freshwater wetland on Earth, with a vast area of grassland plains often used for

extensive cattle ranching (Eaton et al. 2017). Therefore, livestock production has been the

main economic activity in this ecosystem, where approximately 80% of the land is used as

native and introduced pastures (Eaton et al. 2011).

According to the Köppen classification (Alvares et al. 2014), the regional climate is Aw

(tropical hot-wet), with a rainy summer and dry winter. The annual average temperature is

26 �C (12–40 �C), with the highest average temperature occurring between September and

October, and the annual precipitation ranging from 1,200 to 1,300 mm (Cristaldo et al.

2017).
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Sampling sites

The studied area has been historically influenced by livestock farming activities, where we

sampled dung beetles in 14 areas of natural grasslands that had been used for cattle grazing

in the past. The vegetation of these areas is dominated by a ground layer composed of

natural grasses (e.g. Andropogon spp. and Axonopus spp.), herbs, and small shrubs; and

predominantly sandy soil ([ 70% sand). These areas present a gradient of different ages

since cattle were removed: 0.4 year (3 months without cattle grazing), 1 year, 2 years,

3 years, 5 years, 6 years, 7 years, 10 years, three areas with 20 years and three areas with

22 years. Unfortunately, we did not find any area that had a cattle removal period between

10 and 20 years in the studied landscape. We also sampled dung beetles in ten areas of

natural grasslands that were being used for cattle grazing (0.8–1.0 animals/ha) at the time

of sampling, as the reference sites. All sites were separated by a distance varying from 0.5

to 80 km, to ensure independence of the samples (da Silva and Hernández 2015). The

landscape surrounding the sampling sites is dominated by extensive exotic pasturelands

(Urochloa spp.) and patches of natural savannas (Correa et al. 2016a), with the presence of

wild animals typical of Pantanal and Cerrado biomes (eg., anteaters, armadillos, deer,

wolves, tapirs, rodents and others) (Eaton et al. 2017).

Experimental design

For this study, we applied the space-for-time substitution method (SFT). This method is

widely applied in ecological modelling which contemporary spatial patterns of biodiversity

are used to model temporal processes and project changes through time, either into the

future or into the past (Blois et al. 2013; Wogan and Wang 2018; Damgaard 2019). In order

to apply SFT, it is important that the sites are ordered into a sequence that reflects the

stages of development, for example, the successional age (Blois et al. 2013; França et al.

2016). Thus, it is essential to know the history of the sites to understand if the process is

constant or stationary; that is, the random variation of the environment around a fixed

mean. In this case, spatial regression models may be used for studying interspecific

interactions and successional processes (Damgaard 2019). As such, in our study, this

method has been used to evaluate dung beetle diversity in restorating chronosequence in

tropical forests (see Audino et al. 2014; Derhé et al. 2016).

Dung beetle sampling and identification

Sampling was conducted during the rainy season, in January–February 2016. The rainy

season is the most appropriate period to sample due to increased dung beetle richness and

functional diversity in Brazilian pastures (Correa et al. 2018). We used pitfall traps baited

with * 40 g of carrion (decaying beef) or cattle dung (40 g) in order to ensure an accurate

representation of the local dung beetle functional and trophic groups (Correa et al. 2016b).

The traps consisted of a plastic container (15 cm diameter and 9 cm deep), installed at

ground level, which were partly filled with 250 mL of water, salt and detergent, and a

plastic lid placed above ground to protect from rain and sun. The baits were placed in

plastic containers (50 mL) at the center of each trap using a wire as bait holder.

In each site, we placed three sampling points spaced 250 m apart along a linear transect

(500 m) installed 50 m from the habitat edge. Each sample point contained two pitfall

traps separated by 3 m, one with each bait type (feces and carrion), which were active for
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48 h. We performed the same sampling effort in the reference habitat. Dung beetles

captured were identified at genus level (Vaz-de-Mello et al. 2011), and then sent to an

expert to perform species identification (Fernando Z. Vaz-de-Mello). Vouchers were

deposited in the Invertebrate Ecology and Conservation Laboratory, at the Universidade

Federal de Lavras (UFLA; Lavras, Minas Gerais, Brazil).

Dung beetle traits

We analyzed seven functional traits that are directly related to the ecosystem functions

performed by dung beetles (Slade et al. 2007; Barrágan et al. 2011; Braga et al. 2013;

Griffiths et al. 2015; Audino et al. 2014, 2017): food relocation habitat (rollers, tunnelers

and dwellers), diet (coprophagous, necrophagous or generalists), diel activity (nocturnal,

diurnal or mixed), body mass, body mass-adjusted front leg area, body mass-adjusted

pronotum volume, and back:front leg lengths (see Griffiths et al. 2015 for more details on

the methodology) (Table S1 in Supplementary Material). We described the protocols used

for trait assignments in the Supplementary Material. When necessary, we also obtained

additional information on dung beetle traits from the literature and specialists.

Data analysis

Species richness, number of individuals and biomass

We tested the effects of cattle grazing removal on total species richness, number of

individuals, diversity (Shannon index) and biomass of dung beetles using Generalized

Additive Models (GAMs) with a thin plate smoother. GAMs were chosen due to their

suitability to non-parametric data showing a high degree of dispersal (Wood 2006). This

analysis was implemented using the ‘‘mgcv’’ package in the R v 3.3.1 (R Development

Core Team 2019).

Taxonomic and functional composition

To verify whether dung beetle taxonomic and functional composition are influenced by

time since cattle removal, we performed a DistLM analysis (Distance-based Multivariate

Analysis for a Linear Model, Legendre and Anderson 1999; McArdle and Anderson 2001).

Species and functional composition matrices were used as response variables and cattle

removal time as a predictor variable. Matrices were transformed in triangular matrices

using Bray–Curtis similarity index. Abundance data of each species and of each trait was

standardized and square root transformed (Anderson and Willis 2003). Time since cattle

abandonment was also transformed in a similarity matrix, but using Euclidian distance.

DistLM analyzes and models the relationship between a multivariate data cloud and one or

more independent variables (Anderson et al. 2008).

To determine whether taxonomic and functional composition of dung beetle assemblage

is progressing towards or deviating from the reference sites, we performed non-metric

multidimensional scaling analysis (NMDS) and a permutational multivariate analysis of

variance (PERMANOVA). NMDS was used to graphically express the similarity between

sites and PERMANOVA to test for significant differences in taxonomic and functional

composition among site groups. To carry out this analysis we categorized the study sites as:

control (reference sites; n = 10), early-stage (0.4–3 years; n = 4), mid-stage (5–10 years;
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n = 4) and late-stage of cattle removal time (20–22 years; n = 6). The NMDS and PER-

MANOVA were performed using the software PRIMER ? (Anderson et al. 2006; Clarke

and Gorley 2006). Finally, we used similarity percentage (SIMPER) analysis (Clarke 1993)

to determine the contributions of individual species in terms of distinguishing differences

in community structure among categorized groups. This analysis was performed using Past

(Hammer et al. 2001).

Functional diversity

To calculate three functional diversity indexes that measure different aspects of functional

diversity, we used the ‘‘FD’’ package (R Development Core Team 2019): (1) functional

dispersion (FDis) the distribution of abundances in the space of functional traits in relation

to a weighted centroid in abundance and the volume of space occupied (Laliberté and

Legendre 2010), (2) Functional evenness (FEve) summarizes how species abundances are

distributed along the occupied functional space; and (3) Functional richness (FRic) rep-

resents the range of traits in a community quantified by the volume of functional trait space

occupied (Villéger et al. 2008).

We evaluated the influence of cattle removal time on FDis, FEve and FRic using GAMs.

This analysis was implemented using the ‘‘mgcv’’ package in the R v 3.3.1 (R Develop-

ment Core Team 2019).

Results

Species richness, number of individuals and biomass

We collected 1622 dung beetle individuals from 32 species of 16 genera and six tribes

(Table S1). In the reference sites (cattle-used grasslands) we recorded 23 species and 557

individuals, while in the cattle grazing removal sites; we recorded 32 species and 1065

individuals (Table S1).

The identity of dominant species changed over cattle removal age. However, Can-

thidium aff. viride was present among the three dominant species in 10 of the 11 cattle

removal ages (Fig. 1). Eleven species were no longer present on sites that had experienced

no grazing for over 10 years of cattle removal, three have appeared and 18 species were

distributed along all cattle removal ages (Fig. 2).

Species richness (R2 = 0.46; p = 0.03; Fig. 2a) and number of individuals (R2 = 0.51;

p\ 0.001; Fig. 2b) have a significant relationship with cattle removal time, decreasing the

dung beetle abundance (93 times) and species richness (6 times) until ten years of cattle

removal; and then increasing dung beetle abundance (73 times) and species richness (5

times) until 22 years. However, species diversity (Shannon index) (R2\ 0.001; p = 0.711;

Fig. 2c) and biomass were not influenced by time of cattle grazing removal (R2\ 0.001;

p = 0.372; Fig. 2d).

Taxonomic and functional composition

Taxonomic composition was significantly influenced by cattle removal time (13.84% of

independent effect) (Pseudo-F = 3.53, p = 0.001, df = 22), however, functional composi-

tion was not (Table 1).
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Taxonomic composition in the different categories of cattle grazing removal deviates

from the reference sites (cattle-used sites) (Fig. 3a). PERMANOVA analysis revealed that

except for reference sites and early-stage removal sites (t = 1.21; p = 0.13) (Table 2), all

other categories were significantly different from each other based on taxonomic com-

position (Pseudo-F = 2.94; p = 0.001) (Fig. 3a; Table 2). Ten species Canthidium aff.

viride, Ateuchus sp., Canthon conformis, Digitonthophagus gazella, Uroxys aff. corpo-

raali, Canthon unicolor, Ontherus appendiculatus, Deltochilum aff. komareki, Canthon

curvodilatatus and Dichotomius opacipennis contributed to[ 80% of the observed dif-

ferences in community composition among all categories (Table S2). For functional

composition, PERMANOVA analysis revealed that only mid-stage and late-stage aban-

donment were significantly different from each other based on functional composition

(t = 1.65; p = 0.04) (Table 2). In contrast, all other categories were not significantly dif-

ferent from each other (Pseudo-F = 1.37; p = 0.16) (Fig. 4b; Table 2).

Functional diversity

The time of cattle grazing removal did not influence the FRic (R2\ 0.001; p = 0.614;

Fig. 5a), FEve (R2 = 0.25; p = 0.10; Fig. 5b) and FDis (R2 = 0.13; p = 0.18; Fig. 5c).

Discussion

This study evaluated the successional trajectory of dung beetle communities in a tropical

grassy ecosystem after cattle grazing removal. Our results show a strong decrease of both

abundance and species richness of dung beetles in the first 10 years of cattle grazing

abandonment. However, after 10 years we observed an increase in dung beetle richness

and abundance. Taxonomic composition was influenced by cattle removal time

Fig. 1 Rank distribution of dung beetles species across natural grassland with different cattle removal times
in a tropical grassy ecosystem. a, Canthidium aff. viride; b, Ateuchus sp.; c, Canthon conformis; d,
Digitonthophagus gazella; e, Genieridium bidens; f, Ontherus appendiculatus; g, Dichotomius opacipennis;
h, Canthon cinctellus; i, Canthon curvodilatatus; j, Eurysternus aeneus; k, Onthophagus aeneus; l, Canthon
histrio; m, Canthidium aff. refulgens; n, Deltochilum aff. komareki; o, Uroxys aff. corporaali; p, Canthon
unicolor
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demonstrating the importance of cattle in the structuration of dung beetle communities in

natural grasslands. Functional diversity and composition were not affected by cattle

grazing removal. Thus, we demonstrated that taxonomic but not functional diversity of

dung beetles was altered by cattle grazing removal, with a strong negative impact on

taxonomic diversity in the first ten years of cattle grazing removal, with an onset of

community recovery of species diversity after 10 years, but with a distinct community.

Patterns of dung beetle species distribution across natural grasslands
with different cattle removal times

Canthidium aff. viride was the dominant in 10 of the 11 ages of cattle removal we

examined, demonstrating that, this species is unaffected by the effects of cattle grazing

Fig. 2 Variation in the distribution of dung beetle species occurrence (percentage) across natural grasslands
with different cattle removal times in a tropical grassy ecosystem. Percentage is based in the dung beetle
abundance in each natural grassland
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removal on species composition. Dichotomius bos and O. appendiculatus are among the

species that were distributed along all cattle removal ages. These species are also

Fig. 3 Relationship between cattle removal time and a species richness, b number of individuals, diversity
(c) and d biomass

Table 1 Results of distance based linear models (DistLM)

Variable AICc SS(trace) Pseudo-F P Prop Cumulative res.df

Marginal tests

Functional CRT – 6599.8 1.243 0.272 0.053 – 22

Taxonomic CRT – 7323.5 3.534 0.001 0.138 – 22

Sequential tests

Taxonomic CRT 185.75 7323.5 3.534 0.001 0.138 0.138 22

Response variable is dung beetle taxonomic composition and functional composition and predictor variable
is cattle removal time (CRT)

Prop proportion of explained variation
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considered important for introduced Brazilian pastures due to their frequency, abundance

and wide distribution in pastures (Tissiani et al. 2017), and are dominant in natural

grasslands of the Pantanal (Correa et al. 2016a).

Dichotomius nisus, D. gazella and Trichillum externepunctatum disappeared after 10

years of cattle removal. D. nisus and T. externepunctatum are also considered important for

introduced Brazilian pastures (Tissiani et al. 2017). In addition, D. nisus is a dominant

species in natural grasslands of the Brazilian Pantanal (see Correa et al. 2016a). We found

a higher abundance of D. gazella in control sites and after 0.4 years of cattle removal.

However, this species remained in the sites until three years after cattle removal. It is an

Fig. 4 Non metric multidimensional scaling graph exhibiting a species composition similarity, and
b functional composition similarity relationships (based on Bray–Curtis similarity) between areas with
different cattle removal times and the control (cattle-used sites). Cattle grazing removal categories are:
early-stage (0.4–3 years), mid-stage (5–10 years), and late-stage of removal (20–22 years)

Table 2 Permutational analysis of variance (PERMANOVA) contrasting grassland categories according to
taxonomic and functional composition

Source of variation Taxonomic Functional

Pseudo-F P Pseudo-F p

Grassland categories 2.94 0.001* 1.37 0.16

Post hoc comparison of systems

Grassland categories T p T p

Control versus late-stage of cattle removal 2.2 0.001* 1.20 0.19

Control versus mid-stage of cattle removal 1.47 0.02* 1.09 0.28

Control versus early-stage of cattle removal 1.2 0.12 0.84 0.57

Early-stage of cattle removal versus late-stage of cattle removal 1.68 0.003* 1.19 0.23

Early-stage of cattle removal versus mid-stage of cattle removal 1.63 0.03* 1.24 0.17

Mid-stage of cattle removal versus late-stage of cattle removed 2.05 0.003* 1.65 0.04*

Pseudo-F and p-value are presented for the main test and test statistic (t) and p-values for each pair-wise
comparison. *p-values\ 0.05
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African species introduced to Brazil during the 1980s to help control gastrointestinal and

parasitic flies. It is a strict coprophage (Miranda et al. 2000) and benefits from cattle

presence (Correa et al. 2019a). However, D. gazella is a threat to the native dung beetle

fauna and could negatively impact local ecosystems (Filho et al. 2018). These results

demonstrated that these species are benefited by cattle presence with higher populations on

sites where cattle farming is occurring.

Fig. 5 Relationship between cattle
removal time and a functional rich-
ness, b functional evenness and
c functional dispersion

123

Biodiversity and Conservation (2020) 29:2311–2328 2321



www.manaraa.com

Finally, C. unicolor, Canthon aff. maldonadoi and Phanaeus palaeno are the species

that appeared after then years of cattle removal. These species are frequently found in

savannahs (Cerrado strictu senso) and the Pantanal biome (Vaz-de-Mello et al. 2017),

being adapted to open ecosystems, which may explain their distribution on sites that have

been absent of cattle of a long period. Thus, these species demonstrated a positive effect of

cattle removal in natural grasslands.

Effects of cattle removal time on dung beetle community

Contrary to our expectations biomass was not influenced by time of cattle grazing removal.

In contrast, we found decreasing dung beetle species richness and abundance until

10 years; and then increasing from 10 to 22 years, showing that the absence of the major

resource (cattle dung) causes a strong negative impact on the dung beetle community in the

first 10 years. Fadda et al. (2008) studying beetle assemblages in France found similar

results to ours. They found a decrease in beetle abundance during the first four year after

sheep grazing abandonment; then after 23 years of grazing abandonment, there was no

significant loss of species. Indeed, the absence, and even the reduction, of grazing and/or

the abandonment of previously grazed grasslands has been reported to negatively affect

dung beetle communities in Europe (Buse et al. 2015; Tonelli et al. 2018, 2019), with a

strong positive effect of grazing continuity on total species richness being reported (Buse

et al. 2015). The fact that the dung beetle community start to recover after 10 years reveals

that the impact of cattle grazing removal is dependent on exclusion time, and demonstrates

the plasticity of Neotropical dung beetles to adapt in tropical grassy ecosystems.

We propose two main mechanisms to explain the increase in dung beetle abundance and

species richness after 10 years of cattle removal: presence of wild animals (change in food

resource) and vegetation structure. Recently, Macedo et al. (2020) demonstrated that

alterations in food resources and vegetation structure played an important role in the dung

beetle assemblages in open ecosystems (e.g. exotic pastures). (1) Presence of wild animals:

there is a consensus in literature that livestock grazing can have a negative impact on

native mammals (Torre et al. 2007; Cao et al. 2016). So, cattle removal can promote the

recovery of wild mammals (Madhusudan 2004; Legge et al. 2011). This was also

demonstrated by a study performed in the same landscape we conducted our study (Eaton

et al. 2017). However, this recovery generally takes a while (years) to happen (Legge et al.

2011; Frank et al. 2013). So, after 10 years of cattle absence, grazing by wild herbivores

may reach the level required to provide enough resources to maintain a high dung beetle

species richness and abundance (Nichols et al. 2009). However, our results show that this

native mammalian fauna was not enough to maintain the dung beetle community during

the first 10 years since cattle removal. In this case, it is likely that the native mammalian

community was not yet well established in early years of removal, resulting not only in low

resource abundance but also spatial distribution of dung diversity (Tonelli et al. 2019). (2)

Changes in vegetation structure: grazing by cattle has a direct effect on vegetation by

modifying the structure and the composition of plant communities and limiting or

excluding ligneous species establishment (Listopad et al. 2018). The absence of livestock

leads to changes in the vegetation structure (herbaceous density and complexity) of our

study area; such as an invasion of shrubs, native herbs and increase in plant biomass (native

grass). Thus, after 10 years of cattle removal, the changes in vegetation structure may have

altered the local microclimate conditions (Edmondson et al. 2016; Ozkan and Gokbulak

2017) and favored the colonization by a number of habitat specialist dung beetle species
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(Larsen 2012). This suggests that greater availability of cattle dung is important, but not

mandatory, for the increase in species richness and abundance of the local dung beetle

community in tropical grassy ecosystems (Halffter and Arellano 2002; Correa et al.

2019a).

Effects of cattle removal time on taxonomic and functional composition

Although, the functional structure of dung beetle communities was not influenced by cattle

grazing removal time, taxonomic structure was, demonstrating the importance of cattle in

the structure of dung beetle communities in natural grasslands. Control and early-stage of

cattle removal had similar species composition. This is probably happening because in the

first 3 years of removal, environmental conditions and vegetation structure remain similar

enough to maintain the same species group as cattle-used sites. Control sites and early-

stage cattle removal shared a high number of dung beetle species (17 species, see Fig. 1),

being some of these species benefited by cattle grazing, such as: C. curvodilatatus, Del-

tochilum pseudoicarus and D. gazella (Correa et al. 2019a). In contrast, all other categories

of cattle removal (mid-stage and late-stage) were different from control and early – stage

removal sites. In these sites, a variation in the vegetation structure (mainly vegetation

density) occurred due to cattle absence (see Fig. S1). This variation in vegetation structure

can happen because cattle grazing can hinder plant succession, enabling forage develop-

ment (Adler et al. 2001). Despite this, we could not find a statistical relationship between

vegetation density and complexity and cattle removal age, it is possible to see a variation in

vegetation density over time (see Fig. S1). The modification of the vegetation structure

(e.g., herbaceous density and complexity) can influence environmental conditions (e.g.

atmospheric and soil surface luminosity, temperature and humidity) (Edmondson et al.

2016; Ozkan and Gokbulak 2017), directly affecting the biology of dung beetle species

(Hanski and Cambefort 1991), and modifying the structure of dung beetle community

(Halffter and Arellano 2002; Costa et al. 2017). Indeed, our results show the occurrence of

new species that did not occur in the control and early—stage of removal, such as; C. aff.

maldonadoi, C. unicolor and P. palaeno (see Fig. 2), forming a distinct dung beetle

community independent of cattle grazing. In summary, this result demonstrates that tax-

onomic composition is more sensitive than functional structure to cattle grazing removal.

Effects of cattle removal time on functional diversity

Functional diversity did not show a relationship with cattle grazing removal. In our study,

the decline and subsequent recovery of dung beetle species richness and abundance after

20 years of cattle grazing abandonment was not accompanied by similar functional

diversity changes. Differences in taxonomic and functional patterns may be the result of

functional redundancy between species in cattle-used systems and different cattle exclu-

sion ages; or replacement by functionally different species that could maintain similar

functional diversity values (Rosenfeld 2002; Magnago et al. 2014). Thus, even with species

richness reduction in the first 10 years of cattle removal, the loss of functionally spe-

cialized species may not have occurred, resulting in a lack of reduction in functional

diversity after cattle removal.

Overall, functional responses have been shown to depend mainly on the intensity of the

disturbed and the functional characteristics chosen (Mlambo 2014; Beiroz et al. 2018).

Thus, high intensity disturbances tend to negatively affect both taxonomic and functional
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components of the local biodiversity (Mlambo 2014; Magnago et al. 2014; Correa et al.

2019b). In contrast, a low intensity disturbance in highly diversified communities does not

modify functional structure, but may alter species composition (Magnago et al. 2014). In

this sense, the absence of cattle grazing may represent a low disturbance for dung beetle

functional diversity in tropical grassy ecosystems. Since functional diversity is directly

related to ecosystem functions (Gerisch et al. 2012; Mouillot et al. 2013; Lauretto et al.

2015), our results suggest a possible maintenance of ecological functions performed by

dung beetles in tropical grassy ecosystems after cattle grazing removal.

Conservation implications

Tropical grassy ecosystems dominate the tropics and account for 20% of the global surface

area (Scholes and Archer 1997), sustaining unique biodiversity and providing valuable

ecological services to humankind (Parr et al. 2014). Despite their importance, they have

been neglected in terms of conservation and public policies (Overbeck et al. 2015).

Although there is still debate about the trade-offs between livestock grazing and/or

exclusion and the potential for grassland ecosystem regeneration (Törok et al. 2016;

Listopad et al. 2018), in tropical grassy ecosystems this discussion is incipient (Overbeck

et al. 2015; Veldmann et al. 2015). So, since the dung beetle is a considerable indicator for

monitoring environmental change across the globe (Nichols et al. 2007), our results suggest

that complete cattle grazing removal, at least in a short time (10 years), may be an inef-

ficient management tool for restoration and conservation of detritus-feeding insects in

tropical grassy ecosystems. We highlight a need for research on the benefit of moderate

livestock grazing for the conservation of tropical grassy ecosystems. For example, research

on semi-natural grassland in temperate zones (Europa) has led to the recommendations that

complete grazing abandonment is not a good management plan for the conservation of this

habitats and that moderate grazing is required (Törok et al. 2016; Tonelli et al. 2018). In

the case of Europe where the majority of native grazers have gone extinct, the continuity of

grazing by domestic animals is needed (Buse et al. 2015; Tonelli et al. 2018, 2019); but in

tropical grassy ecosystems it may be possible that eventually domestic animals will no

longer be required. In addition, studies with reintroduction of cattle after different times of

grazing removal are also needed (Listopad et al. 2018), to provide information that may

help us to create a livestock management that determines the most appropriate cattle

removal interval and reintroduction. Thus, we may integrate human use and conservation

of tropical grassy ecosystems efficiently (Bond and Parr 2010; Veldmann et al. 2015).
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Torre I, Dı́az M, Martı́nez-Padilla J, Bonai R, Viñuela J, Fargallo JA (2007) Cattle grazing, raptor abun-
dance and small mammal communities in Mediterranean grasslands. Basic Appl Ecol 8:565–575

van Klink R, van der Plas F, van Noordwijk CG, Wallis-De-Vries MF, Olff H (2015) Effects of large
herbivores on grassland arthropod diversity. Biol Rev 90:347–366

Vaz-de-Mello FZ, Bavutti LLO, Flechtmann CAH, Puker A, Correa CMA (2017) Lista de espécies dos
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